Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.903
Filtrar
1.
BMC Oral Health ; 24(1): 450, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614992

RESUMO

BACKGROUND: Ghost cell odontogenic carcinoma (GCOC) is a rare malignancy characterized by the presence of ghost cells, preferably in the maxilla. Only slightly more than 50 case reports of GCOC have been documented to date. Due to the rarity of this tumor and its nonspecific clinical criteria, there is a heightened risk of misdiagnosis in clinical examination, imaging findings, and pathology interpretation. CASE PRESENTATION: A 50-year-old male patient presented to the hospital due to experiencing pain in his lower front teeth while eating for the past 2 months. Upon examination, a red, hard, painless mass was found in his left lower jaw, measuring approximately 4.0 cm × 3.5 cm. Based on the malignant histological morphology of the tumor and the abundant red-stained keratinized material, the preoperative frozen section pathology misdiagnosed it as squamous cell carcinoma (SCC). The surgical resection specimen pathology via paraffin section revealed that the tumor was characterized by round-like epithelial islands within the fibrous interstitium, accompanied by a large number of ghost cells and some dysplastic dentin with infiltrative growth. The malignant components displayed marked heterogeneity and mitotic activity. Additionally, a calcified cystic tumor component of odontogenic origin was observed. Hemorrhage, necrosis, and calcifications were present, with a foreign body reaction around ghost cells. Immunoreactivity for ß-catenin showed strong nuclear positivity in tumor cells, while immunostaining was completely negative for p53. The Ki67 proliferation index was approximately 30-40%. The tumor cells exhibited diffuse CK5/6, p63, and p40 immunoreactivity, with varying immunopositivity for EMA. Furthermore, no BRAFV600E mutation was identified by ARMS-PCR. The final pathology confirmed that the tumor was a mandible GCOC. CONCLUSION: We have reported and summarized for the first time the specific manifestations of GCOC in frozen section pathology and possible pitfalls in misdiagnosis. We also reviewed and summarized the etiology, pathological features, molecular characteristics, differential diagnosis, imaging features, and current main treatment options for GCOC. Due to its rarity, the diagnosis and treatment of this disease still face certain challenges. A correct understanding of the pathological morphology of GCOC, distinguishing the ghost cells and the secondary stromal reaction around them, is crucial for reducing misdiagnosis rates.


Assuntos
Carcinoma de Células Escamosas , Tumores Odontogênicos , Masculino , Humanos , Pessoa de Meia-Idade , Secções Congeladas , Mandíbula , Tumores Odontogênicos/diagnóstico , Calcificação Fisiológica
2.
Carbohydr Polym ; 335: 122063, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616074

RESUMO

The surface properties of cardiovascular biomaterials play a critical role in their biological responses. Although bacterial nanocellulose (BNC) materials have exhibited potential applications in cardiovascular implants, the impact of their surface characteristics on biocompatibility has rarely been studied. This study investigated the mechanism for the biocompatibility induced by the physicochemical properties of both sides of BNC. With greater wettability and smoothness, the upper BNC surface reduced protein adsorption by 25 % compared with the lower surface. This prolonged the plasma re-calcification time by 14 % in venous blood. Further, compared with the lower BNC surface, the upper BNC surface prolonged the activated partial thromboplastin time by 5 % and 4 % in arterial and venous blood, respectively. Moreover, the lower BNC surface with lesser rigidity, higher roughness, and sparser fiber structure promoted cell adhesion. The lower BNC surface enhanced the proliferation rate of L929 and HUVECs cells by 15 % and 13 %, respectively, compared with the upper BNC surface. With lesser stiffness, the lower BNC surface upregulated the expressions of CD31 and eNOS while down-regulating the ICAM-1 expression - This promoted the proliferation of HUVECs. The findings of this study will provide valuable insights into the design of blood contact materials and cardiovascular implants.


Assuntos
Materiais Biocompatíveis , Líquidos Corporais , Humanos , Adsorção , Materiais Biocompatíveis/farmacologia , Calcificação Fisiológica , Células Endoteliais da Veia Umbilical Humana
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563521

RESUMO

Pigs from 64 commercial sites across 14 production systems in the Midwest United States were evaluated for baseline biological measurements used to determine bone mineralization. There were three pigs selected from each commercial site representing: 1) a clinically normal pig (healthy), 2) a pig with evidence of clinical lameness (lame), and 3) a pig from a hospital pen that was assumed to have recent low feed intake (unhealthy). Pigs ranged in age from nursery to market weight, with the three pigs sampled from each site representing the same age or phase of production. Blood, urine, metacarpal, fibula, 2nd rib, and 10th rib were collected and analyzed. Each bone was measured for density and ash (defatted and non-defatted technique). A bone × pig type interaction (P < 0.001) was observed for defatted and non-defatted bone ash and density. For defatted bone ash, there were no differences among pig types for the fibulas, 2nd rib, and 10th rib (P > 0.10), but metacarpals from healthy pigs had greater (P < 0.05) percentage bone ash compared to unhealthy pigs, with the lame pigs intermediate. For non-defatted bone ash, there were no differences among pig types for metacarpals and fibulas (P > 0.10), but unhealthy pigs had greater (P < 0.05) non-defatted percentage bone ash for 2nd and 10th ribs compared to healthy pigs, with lame pigs intermediate. Healthy and lame pigs had greater (P < 0.05) bone density than unhealthy pigs for metacarpals and fibulas, with no difference observed for ribs (P > 0.10). Healthy pigs had greater (P < 0.05) serum Ca and 25(OH)D3 compared to unhealthy pigs, with lame pigs intermediate. Healthy pigs had greater (P < 0.05) serum P compared to unhealthy and lame pigs, with no differences between the unhealthy and lame pigs. Unhealthy pigs excreted significantly more (P < 0.05) P and creatinine in the urine compared to healthy pigs with lame pigs intermediate. In summary, there are differences in serum Ca, P, and vitamin D among healthy, lame, and unhealthy pigs. Differences in bone mineralization among pig types varied depending on the analytical procedure and bone, with a considerable range in values within pig type across the 14 production systems sampled.


There is little literature or data comparing bone diagnostic results for healthy, lame, and unhealthy pigs. Typically, diagnosticians assessing clinical lameness cases in pigs will measure bone mineralization along with histopathological evaluation to diagnose and assess the severity of metabolic bone disease. Bone ash is the primary method to determine bone mineralization, with the removal of the lipid in the bone (defatting) before the bone is ashed, compared to not removing the lipid before the ashing (non-defatted). Defatting the bone reduces the amount of variation across the bones compared to non-defatting. In this diagnostic survey, there was no difference among the healthy, lame, or unhealthy pigs when comparing defatted bone ash, however, unhealthy pigs had an increased bone ash percentage compared to the healthy and lame pigs when the bones were assessed using the non-defatted procedure. There was variation across production systems and pig types for serum vitamin D. When comparing the pig types, healthy pigs had increased serum Ca, P, and vitamin D [25(OH)D3] compared to the unhealthy pigs, with the lame pigs intermediate.


Assuntos
Calcificação Fisiológica , Minerais , Suínos , Animais , Densidade Óssea , Costelas , Ração Animal/análise , Dieta
4.
Animal ; 18(4): 101130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579665

RESUMO

To maximize the efficiency of dietary P utilization in swine production, understanding the mechanisms of P utilization in lactating sows is relevant due to their high P requirement and the resulting high inorganic P intake. Gaining a better knowledge of the Ca and P quantities that can be mobilized from bones during lactation, and subsequently replenished during the following gestation, would enable the development of more accurate P requirements incorporating this process of bone dynamics. The objective was to measure the amount of body mineral reserves mobilized during lactation, depending on dietary digestible P and phytase addition and to measure the amount recovered during the following gestation. Body composition of 24 primiparous sows was measured by dual-energy x-ray absorptiometry 2, 14, 26, 70 and 110 days after farrowing. Four lactation diets were formulated to cover nutritional requirements, with the exception of Ca and digestible P: 100% (Lact100; 9.9 g Ca and 3.0 g digestible P/kg), 75% (Lact75), 50% without added phytase (Lact50) and 50% with added phytase (Lact50 + FTU). The gestation diet was formulated to cover the nutritional requirements of Ca and digestible P (8.2 g Ca and 2.6 g digestible P/kg). During the 26 days of lactation, each sow mobilized body mineral reserves. The mean amount of mobilized bone mineral content (BMC) was 664 g, representing 240 g Ca and 113 g P. At weaning, the BMC (g/kg of BW) of Lact50 sows tended to be lower than Lact100 sows (-12.8%, linear Ca and P effect × quadratic time effect) while the BMC of Lact50 + FTU sows remained similar to that of Lact100 sows. During the following gestation, BMC returned to similar values among treatments. Therefore, the sows fed Lact50 could recover from the higher bone mineral mobilization that occurred during lactation. The P excretion was reduced by 40 and 43% in sows fed Lact50 and Lact50 + FTU, respectively, relative to sows fed Lact100. In conclusion, the quantified changes in body composition during the lactation and following gestation of primiparous sows show that bone mineral reserves were mobilized and recovered and that its degree was dependent on the dietary P content and from phytase supplementation during lactation. In the future, considering this potential of the sows' bone mineralization dynamics within the factorial assessment of P requirement and considering the digestible P equivalency of microbial phytase could greatly limit the dietary use of inorganic phosphates and, thus, reduce P excretion.


Assuntos
6-Fitase , Fósforo na Dieta , Feminino , Animais , Suínos , Cálcio , Lactação , Calcificação Fisiológica , 6-Fitase/metabolismo , Dieta/veterinária , Cálcio da Dieta , Minerais , Ração Animal/análise , Fósforo/metabolismo
5.
Biochem Biophys Res Commun ; 710: 149854, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581947

RESUMO

Peripheral serotonin levels are associated with cardiovascular disease risk. We previously found that serum serotonin levels are higher in hyperlipidemic mice than wild-type mice. Evidence also suggests that serotonin regulates biomineralization, in that serotonin treatment augments TNF-a-induced matrix calcification of aortic valve interstitial cells and that a selective inhibitor of peripheral serotonin, LP533401, rescues bone loss induced by ovariectomy in mice. Thus, in the present study, we examined the effects of LP533401 on both skeletal bone mineral density (BMD) and aortic calcification in both young and older hyperlipidemic mice susceptible to calcific atherosclerosis and bone loss. By serial in vivo microCT imaging, we assessed BMD and aortic calcification of Apoe-/- mice fed an atherogenic (high cholesterol) diet alone or mixed with LP533401. Results show that in the young mice, LP533401 blunted skeletal bone loss in lumbar vertebrae but not in femurs. LP533401 also blunted the initial development of aortic calcification but not its progression. Echocardiographic analysis showed that LP533401 blunted both hyperlipidemia-induced cardiac hypertrophy and left ventricular dysfunction. In the older mice, LP533401 increased the BMD of lumbar vertebrae but not of femurs. The aortic calcification progressed in both controls and LP533401-treated mice, but, at post-treatment, LP533401-treated mice had significantly less aortic calcification than the controls. These findings suggest that LP533401 mitigates adverse effects of hyperlipidemia on skeletal and vascular tissues in site- and stage-dependent manners.


Assuntos
Aterosclerose , Calcinose , Hiperlipidemias , Pirimidinas , Calcificação Vascular , Feminino , Camundongos , Animais , Serotonina , Calcificação Fisiológica , Valva Aórtica/diagnóstico por imagem , Hiperlipidemias/complicações , Calcificação Vascular/etiologia
6.
PLoS One ; 19(4): e0301874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630684

RESUMO

Mytilus edulis is a commercially and ecologically important species found along the east coast of the United States. Ecologically, M. edulis improves water quality through filtration feeding and provides habitat formation and coastal protection through reef formation. Like many marine calcifiers, ocean warming, and acidification are a growing threat to these organisms-impacting their morphology and function. Museum collections are useful in assessing long-term environmental impacts on organisms in a natural multi-stressor environment, where acclimation and adaptation can be considered. Using the American Museum of Natural History collections ranging from the early 1900s until now, we show that shell porosity changes through time. Shells collected today are significantly more porous than shells collected in the 1960s and, at some sites, than shells collected from the early 1900s. The disparity between porosity changes matches well with the warming that occurred over the last 130 years in the north Atlantic suggesting that warming is causing porosity changes. However, more work is required to discern local environmental impacts and to fully identify porosity drivers. Since, porosity is known to affect structural integrity, porosity increasing through time could have negative consequences for mussel reef structural integrity and hence habitat formation and storm defenses.


Assuntos
Mytilus edulis , Mytilus , Animais , Desenvolvimento Industrial , Museus , Concentração de Íons de Hidrogênio , Calcificação Fisiológica
7.
Int. j. cardiovasc. sci. (Impr.) ; 37(suppl.1): 98-98, abr. 2024. ilus
Artigo em Português | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1538354

RESUMO

INTRODUÇÃO: Várias etiologias podem levar à inflamação pericárdica, sendo as mais frequentes a tuberculosa e viral. O pericárdio inflamado e também o processo reparativo incluindo fibrose e espessamento subsequente estão relacionados a quadros de constricção e insuficiência cardíaca. Descrevemos um caso em que a etiologia da pericardite constrictiva (PC) foi incomum, secundária à trauma do coração. CASO CLÍNICO: Homem, 69 anos, trabalhador rural, ex-tabagista, sem outras comorbidades. Há 3 meses passou a apresentar dispneia aos moderados esforços e edema de membro inferiores. À avaliação, apresentava sinais de congestão sistêmica, como turgência jugular e ascite, além de pulso paradoxal e sinal de kussmaul. Negou febre, perda de peso, sudorese noturna ou uso de medicações. Em radiografia de tórax, evidenciou-se radiopacidade em silhueta cardíaca sugestiva de calcificação. Ecocardiograma transtorácico evidenciou trombo em átrio direito e pericárdio espesso, associado à imagem hiperrefringrente sugestiva de "massa" com sinais de compressão extrínseca do ventrículo direito e rechaçamento em direção ao ventrículo esquerdo (VE), com retificação do septo interventricular e diminuição da cavidade do VE, resultando em uma disfunção diastólica acentuada, mantendo função sistólica biventricular preservada. Realizado estudo tomográfico, que confirmou intensa calcificação pericárdica com imagem de "pseudotumor" de contornos irregulares, gerando intensa constricção e confirmando o diagnóstico de PC. Paciente foi submetido à pericardiectomia, que evidenciou grande quantidade de trombo calcificado no interior do "pseudo-tumor", com posterior resolução do quadro clínico. Após excluir múltiplas etiologias de pericardite e revisar história clínica, paciente relatou trauma torácico contundente por cabeçada bovina há cerca de 10 anos, que cursou com dor torácica e dispneia por meses, sem atendimento médico na ocasião, sendo a provável etiologia do quadro. CONCLUSÃO: A pericardite constrictiva, diagnóstico infrequente, está ligada a elevada morbimortalidade e pode ser secundária a qualquer comprometimento pericárdico, incluindo trauma torácico. Portanto, faz-se necessário diagnosticar e tratar situações que podem cursar com pericardite aguda e, possivelmente, com PC.


Assuntos
Humanos , Masculino , Idoso , Pericardite Constritiva , Calcificação Fisiológica , Insuficiência Cardíaca
8.
Eur J Med Chem ; 268: 116286, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432057

RESUMO

Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.


Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Humanos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Calcificação Fisiológica , Pirofosfatases
9.
Chin J Dent Res ; 27(1): 53-63, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546520

RESUMO

OBJECTIVE: To investigate FAM20A gene variants and histological features of amelogenesis imperfecta and to further explore the functional impact of these variants. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to identify pathogenic gene variants in three Chinese families with amelogenesis imperfecta. Bioinformatics analysis, in vitro histological examinations and experiments were conducted to study the functional impact of gene variants, and the histological features of enamel, keratinised oral mucosa and dental follicle. RESULTS: The authors identified two nonsense variants c. 406C > T (p.Arg136*) and c.826C > T (p.Arg176*) in a compound heterozygous state in family 1, two novel frameshift variants c.936dupC (p.Val313Argfs*67) and c.1483dupC (p.Leu495Profs*44) in a compound heterozygous state in family 2, and a novel homozygous frameshift variant c.530_531insGGTC (p.Ser178Valfs*21) in family 3. The enamel structure was abnormal, and psammomatoid calcifications were identified in both the gingival mucosa and dental follicle. The bioinformatics and subcellular localisation analyses indicated these variants to be pathogenic. The secondary and tertiary structure analysis speculated that these five variants would cause structural damage to FAM20A protein. CONCLUSION: The present results broaden the variant spectrum and clinical and histological findings of diseases associated with FAM20A, and provide useful information for future genetic counselling and functional investigation.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Calcificação Fisiológica , Biologia Computacional , Esmalte Dentário , Proteínas do Esmalte Dentário/genética , População do Leste Asiático
10.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456502

RESUMO

Vascular calcification is a severe complication of cardiovascular diseases. Previous studies demonstrated that endothelial lineage cells transitioned into osteoblast-like cells and contributed to vascular calcification. Here, we found that inhibition of cyclin-dependent kinase (CDK) prevented endothelial lineage cells from transitioning to osteoblast-like cells and reduced vascular calcification. We identified a robust induction of CDK1 in endothelial cells (ECs) in calcified arteries and showed that EC-specific gene deletion of CDK1 decreased the calcification. We found that limiting CDK1 induced E-twenty-six specific sequence variant 2 (ETV2), which was responsible for blocking endothelial lineage cells from undergoing osteoblast differentiation. We also found that inhibition of CDK1 reduced vascular calcification in a diabetic mouse model. Together, the results highlight the importance of CDK1 suppression and suggest CDK1 inhibition as a potential option for treating vascular calcification.


Assuntos
Osteogênese , Calcificação Vascular , Animais , Camundongos , Calcificação Fisiológica , Diferenciação Celular , Células Endoteliais/fisiologia , Osteogênese/fisiologia , Calcificação Vascular/etiologia
11.
Chin J Dent Res ; 27(1): 17-28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546516

RESUMO

The dentine sialophosphoprotein (DSPP) gene is the only identified causative gene for dentinogenesis imperfecta type 2 (DGI-II), dentinogenesis imperfecta type 3 (DGI-III) and dentine dysplasia type 2 (DD-II). These three disorders may have similar molecular mechanisms involved in bridging the DSPP mutations and the resulting abnormal dentine mineralisation. The DSPP encoding proteins DSP (dentine sialoprotein) and DPP (dentine phosphoprotein) are positive regulators of dentine formation and perform a function during dentinogenesis. The present review focused on the recent findings and viewpoints regarding the relationship between DSPP and dentinogenesis as well as mineralisation from multiple perspectives, involving studies relating to spatial structure and tissue localisation of DSPP, DSP and DPP, the biochemical characteristics and biological function of these molecules, and the causative role of the proteins in phenotypes of the knockout mouse model and in hereditary dentine defects.


Assuntos
Calcinose , Dentinogênese Imperfeita , Fosfoproteínas , Sialoglicoproteínas , Animais , Camundongos , Calcificação Fisiológica , Dentina , Dentinogênese Imperfeita/genética , Modelos Animais de Doenças , Camundongos Knockout , Humanos , Sialoglicoproteínas/genética , Fosfoproteínas/genética
12.
FASEB J ; 38(6): e23559, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38502020

RESUMO

Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.


Assuntos
Cartilagem Articular , Qualidade de Vida , Humanos , Imunoterapia , Inibidores da Angiogênese , Calcificação Fisiológica
13.
Differentiation ; 136: 100757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437764

RESUMO

Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Animais , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Calcificação Fisiológica/genética , Colágeno/metabolismo , Osteogênese Imperfeita/genética , Osso e Ossos , Mutação , Mamíferos/metabolismo
14.
Sci Rep ; 14(1): 5649, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454106

RESUMO

The relationship between energy reserves of cold-water corals (CWCs) and their physiological performance remains largely unknown. In addition, it is poorly understood how the energy allocation to different metabolic processes might change with projected decreasing food supply to the deep sea in the future. This study explores the temporal and spatial variations of total energy reserves (proteins, carbohydrates and lipids) of the CWC Desmophyllum dianthus and their correlation with its calcification rate. We took advantage of distinct horizontal and vertical physico-chemical gradients in Comau Fjord (Chile) and examined the changes in energy reserves over one year in an in situ reciprocal transplantation experiment (20 m vs. 300 m and fjord head vs. mouth). Total energy reserves correlated positively with calcification rates. The fast-growing deep corals had higher and less variable energy reserves, while the slower-growing shallow corals showed pronounced seasonal changes in energy reserves. Novel deep corals (transplanted from shallow) were able to quickly increase both their calcification rates and energy reserves to similar levels as native deep corals. Our study shows the importance of energy reserves in sustaining CWC growth in spite of aragonite undersaturated conditions (deep corals) in the present, and potentially also future ocean.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Estuários , Calcificação Fisiológica/fisiologia , Água , Carbonato de Cálcio , Recifes de Corais
15.
PeerJ ; 12: e17037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436029

RESUMO

Clonal organisms like reef building corals exhibit a wide variety of colony morphologies and geometric shapes which can have many physiological and ecological implications. Colony geometry can dictate the relationship between dimensions of volume, surface area, and length, and their associated growth parameters. For calcifying organisms, there is the added dimension of two distinct components of growth, biomass production and calcification. For reef building coral, basic geometric shapes can be used to model the inherent mathematical relationships between various growth parameters and how colony geometry determines which relationships are size-dependent or size-independent. Coral linear extension rates have traditionally been assumed to be size-independent. However, even with a constant calcification rate, extension rates can vary as a function of colony size by virtue of its geometry. Whether the ratio between mass and surface area remains constant or changes with colony size is the determining factor. For some geometric shapes, the coupling of biomass production (proportional to surface area productivity) and calcification (proportional to volume) can cause one aspect of growth to geometrically constrain the other. The nature of this relationship contributes to a species' life history strategy and has important ecological implications. At one extreme, thin diameter branching corals can maximize growth in surface area and resource acquisition potential, but this geometry requires high biomass production to cover the fast growth in surface area. At the other extreme, growth in large, hemispheroidal corals can be constrained by calcification. These corals grow surface area relatively slowly, thereby retaining a surplus capacity for biomass production which can be allocated towards other anabolic processes. For hemispheroidal corals, the rate of surface area growth rapidly decreases as colony size increases. This ontogenetic relationship underlies the success of microfragmentation used to accelerate restoration of coral cover. However, ontogenetic changes in surface area productivity only applies to certain coral geometries where surface area to volume ratios decrease with colony size.


Assuntos
Antozoários , Calcinose , Traços de História de Vida , Animais , Calcificação Fisiológica , Biomassa
16.
Nutrients ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337692

RESUMO

We previously demonstrated a beneficial effect of high-dose vitamin D in pregnancy on offspring bone and dental health. Here, we investigated the effect of maternal dietary patterns during pregnancy on the risk of bone fractures, bone mineralization and enamel defects until age 6 years in the offspring. Further, the influence of diet on the effect of high-dose vitamin D was analyzed in the COPSAC2010 mother-child cohort including 623 mother-child pairs. A weighted network analysis on FFQs revealed three specific maternal dietary patterns that associated (Bonferroni p < 0.05) with both offspring bone and dental health. The effect of prenatal high-dose (2800 IU/day) vs. standard-dose (400 IU/day) vitamin D on offspring bone mineral content (adjusted mean difference (aMD): 33.29 g, 95% CI: 14.48-52.09, p < 0.001), bone mineral density (aMD: 0.02 g/cm2 (0.01-0.04), p < 0.001), fracture risk (adjusted incidence rate ratio: 0.36 (0.16-0.84), p = 0.02), and enamel defects in primary (adjusted odds ratio (aOR): 0.13 (0.03-0.58), p < 0.01) and permanent molars (aOR: 0.25; (0.10-0.63), p < 0.01) was most pronounced when mothers had lower intake of fruit, vegetables, meat, eggs, sweets, whole grain, offal and fish. This study suggests that prenatal dietary patterns influence offspring bone and dental development, and should be considered in order to obtain the full benefits of vitamin D to enhance personalized supplementation strategy.


Assuntos
Fraturas Ósseas , Vitamina D , Gravidez , Feminino , Animais , Humanos , Criança , Calcificação Fisiológica , Dieta , Vitaminas/farmacologia , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/etiologia , Fraturas Ósseas/prevenção & controle , Densidade Óssea , Suplementos Nutricionais , Esmalte Dentário
17.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396954

RESUMO

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Assuntos
Calcificação Fisiológica , Calcinose , N-Acetilgalactosaminiltransferases , Osteoblastos , Animais , Feminino , Masculino , Camundongos , Calcinose/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fatores de Crescimento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Fósforo , 60636
18.
Toxins (Basel) ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393156

RESUMO

Aflatoxin B1 (AFB1), a ubiquitous mycotoxin in corn-based animal feed, particularly in tropical regions, impairs liver function, induces oxidative stress and disrupts cellular pathways, potentially worsening bone health in modern broilers. A 19-day experiment was conducted to investigate the effects of feeding increasing levels of AFB1-contaminated feed (<2, 75-80, 150, 230-260 and 520-560 ppb) on bone mineralization markers in broilers (n = 360). While growth performance remained unaffected up to Day 19, significant reductions in tibial bone ash content were observed at levels exceeding 260 ppb. Micro-computed tomography results showed that AFB1 levels at 560 ppb significantly decreased trabecular bone mineral content and density, with a tendency for reduced connectivity density in femur metaphysis. Moreover, AFB1 above 230 ppb reduced the bone volume and tissue volume of the cortical bone of femur. Even at levels above 75 ppb, AFB1 exposure significantly downregulated the jejunal mRNA expressions of the vitamin D receptor and calcium and phosphorus transporters. It can be concluded that AFB1 at levels higher than 230 ppb negatively affects bone health by impairing bone mineralization via disruption of the vitamin D receptor and calcium and phosphorus homeostasis, potentially contributing to bone health issues in broilers.


Assuntos
Aflatoxina B1 , Galinhas , Animais , Aflatoxina B1/metabolismo , Receptores de Calcitriol/metabolismo , Calcificação Fisiológica , Cálcio/metabolismo , Microtomografia por Raio-X , Ração Animal/análise , Fósforo/metabolismo , Dieta/veterinária , Fígado
19.
Medicine (Baltimore) ; 103(1): e36212, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181272

RESUMO

RATIONALE: Lhermitte-Duclos disease (LDD), or dysplastic cerebellar gangliocytoma (DCG), is a rare tumor originating from the cerebellar cortex. LDD is a benign neuroglial tumor with uncertain prognosis. Over 200 cases have been reported in the literature mostly in the form of case reports. Thus, we present a spectacular case of LDD with excessive calcification in a female septuagenarian. PATIENT CONCERNS: A 72-year-old female presented with progressive dizziness for 8 months and suffered a head and sacrococcygeal region injury 20 days prior to her admission in our neurosurgery department. DIAGNOSIS: Computed tomography scan showed a right nonspecific cerebellar mass with striated calcification. Magnetic resonance imaging revealed a right "tiger-striped" alteration of the cerebellar cortex. H&E staining revealed a low grade glial neural tumor which was consistent with the diagnosis of LDD or DCG. INTERVENTION: The lesion was total resected. OUTCOMES: The patient recovered well and the cerebellar dysfunctional symptoms subsided 3 months after the operation and 2 years follow-up revealed no recurrence of the lesion and no neurological deficits. LESION: We postulate that the calcification of LDD is age-related and the pathogenesis of disease often observed in young adulthood.


Assuntos
Neoplasias Encefálicas , Calcinose , Glioma , Síndrome do Hamartoma Múltiplo , Feminino , Humanos , Adulto Jovem , Adulto , Idoso , Síndrome do Hamartoma Múltiplo/complicações , Síndrome do Hamartoma Múltiplo/diagnóstico , Síndrome do Hamartoma Múltiplo/cirurgia , Calcinose/diagnóstico por imagem , Calcinose/cirurgia , Calcificação Fisiológica , Cerebelo
20.
Environ Sci Technol ; 58(5): 2404-2412, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252973

RESUMO

Carbon capture, utilization, and storage (CCUS) are widely recognized as a promising technology for mitigating climate change. CO2 mineralization using Ca-rich fluids and high-concentration CO2 gas has been studied extensively. However, few studies have reported CO2 mineralization with atmospheric CO2, owing to the difficulty associated with its low concentration. In seawater, the biomineralization process promotes Ca accumulation and CaCO3 precipitation, assisted by specific organic matter. In this study, we examined the conversion of atmospheric CO2 into CaCO3 in seawater using shell powders (Pinctada fucata, Haliotis discus, Crassostrea gigas, Mizuhopecten yessoensis, Turbo sazae, and Saxidomus purpurata). Among the six species, the shell powder of S. purpurata showed the highest rate of CaCO3 formation and recovery of CaCO3. NaClO treatment test revealed that the organic matter in the shells enhanced the CO2 mineralization. All materials used in this study, including atmospheric CO2, seawater, and shells, are economically feasible for large-scale applications. Using shell powder for CO2 mineralization in seawater embodies an innovative technological advancement to address climate change.


Assuntos
Dióxido de Carbono , Gastrópodes , Animais , Pós , Água do Mar , Calcificação Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...